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A survey is given of the numerical methods used for computing synthetic seismograms. In 
particular, the properties of finite differences, finite elements, integral transforms, and ray 
tracing are described. Each of these methods is capable of giving good results for its own 
range of frequencies and wave numbers. Thus, for complete seismograms, one should be 
prepared to use all of the available tools. 

1. INTRODUCTION 

This report presents a survey of computational techniques used in solving the 
elastodynamics equations in seismology. At the present time there exists no one 
method capable of computing complete synthetic seismograms accurately and 
efficiently for the elastic wave equation with a source having both high and low 
frequency behavior. We discuss here many methods, each of which is applicable to a 
particular range of parameters. 

We discuss the advantages and disadvantages of the most common methods used 
in computational seismology: finite differences and finite elements, integral 
transforms, and ray tracing. Each of these methods has a corresponding set of 
problems for which it is the best one to use. It is also clear that someone who knows 
both numerical analysis and geophysics could easily make substantial increases in the 
computational efficiency of each of these methods. When we are interested in high 
frequency or first motion response, we might well use asymptotic ray theory for an 
inhomogeneous medium and the generalized ray theory for a vertically stratified 
medium. For the long time and the low-frequence response, modal expansion of the 
solution is appropriate in a stratified medium. When the medium is laterally 
heterogeneous, a discrete coordinate method (finite difference or finite elements) is 
useful. 

We list some limitations of the methods. It is numerically inefficient to apply a 
modal expansion method or discrete coordinate methods (finite differences or finite 
elements) to compute the high-frequency response. The reason is that the resolution 
of a rapid variation would require the use of higher modes or the use of small mesh 
widths. The application of an asymptotic ray method to smoothly varying’phenomena 
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encounters multiple turning of the rays and, therefore, caustic surfaces, at which point 
the method breaks down. The limitation on the generalized-ray method is that in a 
many-layered model there are far too many rays for efftcient computation. 

Integral transform methods also have limitations. They can provide accurate 
results over certain regions of the parameter space but not all regions. An integral 
transform method gives an integral representation of the solution. An accurate 
approximation can be efficiently obtained by using asymptotic expansion of integrals 
for the far field and long-time solutions. For the short time or the near-field behavior, 
other approximate methods must be used. In these ranges of parameters, the solutions 
have simple analytic representations. The midfrequency or the intermediate regions 
are inaccessible to approximate analytic treatment, but they are favorable to direct 
numerical solution. 

Our principal conclusion is that there exists no single method which can compute 
with efficiency and with uniform accuracy the response of an inhomogeneous elastic 
medium to an arbitrary source with a spectrum of frequencies. An efficient and 
accurate general software package must be a hybrid of many computational 
procedures. Such a package is yet to be developed. 

We begin with a discussion of finite differences and finite elements. We treat them 
together because they are very similar, in spite of the fact that small differences are 
very important to the true believers. In fact, if either camp were to adopt the best 
features of the other camp, the methods would be greatly improved. The 
circumstances for which these methods are most suitable are short time and short- 
range computation of smooth waves in an arbitrary medium. 

We then discuss integral transform methods. They are restricted to special 
geometry, such as horizontal stratification. From a numerical point of view these 
methods require the numerical evaluation of inverse transforms and the solution of a 
two-point boundary value problem for a system of ordinary differential equations. 
For a stack of homogeneous layers the two-point boundary value problem is 
equivalent to a matrix problem. We comment on numerical difficulties and on the 
geophysical interpretation of numerical methods. For example, poles correspond to 
modes, and iterative schemes for the matrix correspond to generalized rays. 

Finally, we examine ray tracing methods. They may be used in arbitrary 
geometries but they are a high-frequency asymptotic approximation. It is easy to 
track rays without regard to the final destination. If we track ray tubes, it is also 
quite easy to obtain ray amplitudes, again, letting the rays go where they will. If, on 
the other hand, we want a ray which reaches a particular receiver, we must solve a 
two-point boundary value problem. This is more difficult and we point out that the 
effort involved in hitting a specified receiver gives the ray amplitude with little extra 
computation. 
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2. DISCRETE COORDINATE METHODS 

In this section we first discuss finite-difference methods, with emphasis on 
numerically-induced dispersion and numerical boundary conditions. These 
considerations apply to finite-element methods as well, but finite-element methods 
have further special characteristics, which are discussed in Section 2.5. 

The main advantage of finite-difference methods is that they may be used to track 
seismic waves in structures of arbitrary geometry. In particular, in contrast to 
integral-transform methods, they have no restriction to stratified layers. It is true that 
ray tracing methods also are valid in structures of arbitrary geometry, but they 
represent a high-frequency asymptotic approximation. The main disadvantage of 
finite-difference methods is that they necessarily introduce some dispersion, and they 
frequently also have some dissipation. Let us point out that one manifestation of 
cumulative dispersion is dissipation. 

Another peculiarity of finite-difference schemes is that they sometimes require 
more boundary conditions than the corresponding physical problem. Ordinarily, this 
causes no difficulty because the extra boundary conditions may be obtained by 
extrapolation. The main requirement is to be aware of the problem. We shall discuss 
the need for extra numerical boundary conditions and make comments on various 
extrapolation methods. There is an extensive theory on the interaction between 
extrapolation at the boundaries, numerical dispersion, and stability. 

2.1. Numerically-Induced Dispersion 

In a linear elastic solid, waves propagate at precisely two speeds, the speed of 
shear waves and the speed of compression waves. In a difference scheme, however, 
there is a continuum of wave speeds so that waves in a finite-difference grid act like 
waves in a crystal lattice. The characteristic of dispersive waves is that individual 
wavelets move at one speed (the phase velocity), while wave packets move at another 
speed (the group velocity). Because the energy moves at the group velocity, it is the 
group velocity which is physically important (Brillouin [ 121). In most discussions of 
numerically-induced dispersion in numerical analysis journals it is only the phase 
velocity which is mentioned. The most important exception to this misdirected 
emphasis is the very nice review paper (Trefethen [89]). 

As an example which shows numerically induced dispersion, let us consider a 
discretization of the acoustic wave equation u,, = c*u,, by the method of lines 

zi’, = (C*/h*)(Uk+, - 2u, + Uk- 1). (2.1) 

Here, for simplicity we have discretized x only, with xk = kh and uk = u(x,, t). Even 
so, this example has the basic properties of the method of Alterman and Loewenthal 
[3]. By scaling the time r = et/h, equation (2.1) becomes 

d2uJdr2 = uk+ , - 24 + uk- 1. (2.2) 
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This form emphasizes the dimensionless parameter r = cl/h, which measures the 
number of grid lines the wave has passed. 

Equation (2.2) is most easily analyzed in terms of its discrete Fourier transform 

u’= c Uke-ikl. 

Thus multiplying (2.2) by ePik’ and summing yields 

d*zi/dz* = -2( 1 - cos <) u” 

= -4 sin*(</2)27. 

The general solution of this equation is 

zZ= A(<) exp{ir 2 sin(r/2)} + B(r) exp{-ir 2 sin(</2)}. 

Since the inverse transform of (2.3) is 

With xk = kh we have 

A(r) ev[(WP sin(@) + &k&t))] & 
n 

W) exp[(-W)(2 sin(t/2) - bk/(ct)>] &. (2.4) 
7c 

We may analyze the integrals in (2.4) by the method of stationary phase or, 
equivalently in this case, the saddle-point method. Thus, the phase function for the 
second integral in (2.4) is 

and the saddle points or points of stationary phase are the values of {,, at which 
$‘(&,) = 0. That is, <,, satisfies the equation 

cos(<,/2) = x&t). (2.5) 

From standard asymptotic analysis (Brillouin [ 121) condition (2.5) says that given x 
and t with ]x]/(ct) < 1 and for cl/h + co, the second integral in (2.4) is asymptotic to 

const.(h/t)“* 1qY’(&,)l-“* If(&) exp{-ict#(&,)/h}. 
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This may be viewed as saying that for given speed xJt, the wave packet moving at 
that speed has wave numbers centered about &, given by (2.5). In other words, the 
group velocities are c cos(4,/2). Thus, the group velocities range from -c to c. 

From a Taylor expansion of the cosine for wave number to near zero, the group 
velocity is 

c(1 - @8 + +..) 

which is close to c. Note that by (2.3) l/r,, may be regarded as the number of points 
per wave length. It is a rule of thumb among computational physicists that in practice 
one should take to < 0.1 (at least 10 points per wave length). In fact, this rule is not 
rigid. For schemes with higher order of accuracy one may relax it to perhaps 
&,<0.15; see Swartz and Wendroff [85]. 

Another reason not to hold fast to the &, < 0.1 rule is that the numerical dispersion 
is cumulative as t increases, but this effect goes as (et/h) to a fractional power. This 
phenomenon is most easily seen in terms of a heuristic analysis via Taylor approx- 
imation to the difference scheme (2.1) (Chin and Hedstrom [21 I). We may use 

u k+ 1 = u f hu, + (h2/2) u,, f (h3/6) u,,, + (h4/24) u,,., + ... , 

to see that smooth solutions to (2.1) actually approximate the differential equation 

u,, = c2(u,, + h2/12u,,,,). (2.6) 

Here, we have truncated the infinite series at the first correction term. 
The Fourier transform 

u^(& t) = il, u(x, t) eCicX dx 

of the solution u of (2.6) is given by 

u”(& t) =A(() exp{i&(l + h2c2/12)1’2} +B(<) exp{-ict<(l + h2c2/12)“2}. 

for some functions A and B. To within the accuracy of the expansion (2.6) (for h< 
small) this is 

u^(<, t) %A(<) exp{ict<(l + h2r2/24)} + B(r) exp{-ict<(l + h2r2/24)}. (2.7) 

The inverse Fourier transform of (2.7) is a pair of Airy integrals. In fact, with a 
change of variable 

(= (cth2/8) -1’3 v; 

the inverse transform of the second term on the right-hand side of (27) is the Airy 
integral 

(cth2/8)-‘I3 irn B(c) exp{i(wg - q3/3)} dq 
-a, 



NUMERICAL METHODS IN SEISMOLOGY 23 

with 

WC (y) (!L)‘“. 

We see that the dispersion increases with t as t iI3 We also see that the dispersion . 
depends on two dimensionless parameters, the distance from the wave front 
(X - ct)/h, and the number of mesh points that the wave has traversed cc/h. 

For schemes with different order of accuracy the fractional exponent is different, 
but the effect is the same (Chin and Hedstrom [21 I). The point is that as we track a 
wave for longer and longer times, we need to increase the number of points per 
wavelength. 

We have discussed dispersion for a method of lines with discretization of x only. 
The analysis of a full difference scheme is similar but the algebra is more messy. The 
above considerations apply equally well to the elastic wave equations. The main 
difference is that for commonly used schemes the shear waves undergo more 
numerical dispersion than longitudinal waves. 

Finally, we would like to warn the reader that the use of elaborate methods may 
lead to the introduction of parasitic waves. Some examples are given by Okrouhlik 
[67], Okrouhlik and Brepta [68], and Hedstrom [42]. 

2.2. Extra Boundary Conditions 

Boundary conditions needed to solve the partial differential equation must also be 
used in the difference scheme. Some difference schemes, though, require extra 
boundary conditions. Let us illustrate with an example of a difference scheme needing 
more boundary conditions than the corresponding partial differential equation. The 
wave equation may be written as a first-order system of equations 

u, = ux, v, = c2u,. 

In fact, (2.9) is equivalent to d,, = c*#,, if u = 4, and v = $,, 
In order to keep things simple, we discretize in x only, 

(2.9) 

zik = cvk+ 1 - vk- ,)/(2h), 

ck = c’(uk+ 1 - uk- ,)/(2h)* 

(2.10) 

If the differential equation (2.9) is defined on the half line x > 0, then because one 
wave enters from the boundary x = 0, we need one boundary condition, say, 
~(0, t) =f(t). For the difference scheme (2.10), however, we must have a way to 
specify v,,(t) in addition to the physical boundary condition uo(t) =f(t), An extensive 
theory has been developed dealing with ways to choose v,,(t) in a consistent and 
stable manner, and the basic paper in the theory is Gustafsson, Kreiss, and 
Sundstrom [38]. Trefethen’s explanation [89, 901 in terms of group velocity is much 
easier to understand, however. It turns out that for this particular scheme it is 
permissible to take simply v,(t) = VI(t). From a physical point of view it seems more 
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satisfying to obtain the extra boundary condition by integrating the outgoing 
Riemann variable along the characteristic. Thus we might discretize CU, + v, = 
c(cu, + ox) by using 

cli, + I& = c(c(u1 - u,) + (v, - u,))/h. 

This boundary condition is also quite satisfactory. 
It is worth pointing out that people sometimes use special tricks in order to avoid 

the need for these extra boundary conditions. We could have written the difference 
scheme for (2.9) in the form 

fk = tvk+ l/Z - vk- 1,2)/b 

d ki 1/2 = c2(uk+ 1 - u l/h. k 

For this difference scheme it is very convenient to specify ~(0, t), and there is no need 
to extrapolate v at the boundary. The main drawback with this approach is that it is 
awkward to specify a boundary condition of the form 

because u and u aren’t defined at the same grid points. In fact, one very common 
such boundary condition is the requirement that the incoming characteristic variable 
be constant or, equivalently, that its time derivative be zero, 

cu, - v, = 0. 

Physically, this boundary condition says that no waves are reflected from the 
boundary x = 0, so that it gives a transmitting boundary condition. We shall discuss 
transmitting boundary conditions in more detail later, particularly, extensions to 
waves in several space dimensions. 

The points we wish to make here are that it is often convenient to use a difference 
scheme which requires numerical boundary conditions in addition to those 
appropriate for the physical problem, and that it is possible to obtain these extra 
numerical boundary data by extrapolation of interior values. The basic theory for 
such extrapolation schemes is the paper of Gustafsson, Kreiss, and Sundstrom [38], 
but the clearest exposition of the subject is in Trefethen [89, 901. 

2.3. Numerical Dissipation and Art$cial Viscosity 

We make a few comments about numerical dissipation because it is much 
discussed in the numerical analysis literature. In fact, dissipation is of minor 
significance in the computation of smooth waves in linear elasticity. In nonlinear 
waves though, it is so important that it is sometimes added intentionally in the form 
of an artificial viscosity (Richtmyer and Morton [78]). Thus, in computational 
seismology the use of artificial viscosity would ordinarily be confined to the 
computation of large displacements near a source. We mention that for linear wave 
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propagation numerical dissipation is most troublesome when the spatial mesh is too 
coarse to resolve the waves (Chin and Hedstrom [21]), but it is hard to see much use 
in seismology for computations under such conditions. 

There is one situation in linear elasticity in which it is advantageous to add a small 
amount of high-order artificial viscosity, and that is when extrapolation is used to 
generate boundary conditions required by the difference scheme. It is shown by 
Trefethen [90] that this extrapolation can cause inaccuracy and even instability if 
numerical dispersion permits waves to go in the wrong direction and if the 
extrapolation boundary condition excites one of these wrong-way waves. The 
advantage of an artificial viscosity is that it dissipates the wrong-way waves which 
are highly oscillatory in x. (Note though, that we still have to watch out for the 
occasional wrong-way wave which is smooth in x but highly oscillatory in t 
(Trefethen [89, 901). The easiest way to obtain an artificial viscosity appropriate for 
damping wrong-way waves is exemplified by adding dissipation to (2.9) as in 

24, = v, + a(-1)“-’ h2n-’ #“z@x2n, 

v, = c2u, + b(-1)“-’ h2”-’ @“u/ax? 

The choice of a and b is best made by doing numerical experiments, because it 
depends on the difference scheme, the number of grid points per wave length, and the 
distance over which the wave is to propagated. The factor h*“-’ makes the equations 
scale properly. For linear elasticity we would recommend n = 2, and for nonlinear 
problems with shocks it is necessary to use n = 1. 

Finally, let us remark that the discussion on numerical dissipation up to this point 
has been based on the assumption that the dissipation arises from the addition of an 
artificial viscosity to a nondissipative difference scheme. That approach has the 
advantage that the user may control the amount of dissipation through the choice of 
the coefficient of viscosity. There do exist difference schemes which are inherently 
dissipative, such as upstream differences and the Lax-Wendroff scheme. The easiest 
way to identify whether a scheme is dissipative and to determine the order and coef- 
ficient of the principal dissipative term is to obtain its modified equation (Warning 
and Hyett [94]) as we did to get (2.6). We shall not pursue this point further, because 
the difference schemes commonly used . for computational seismology are not 
inherently dissipative. 

2.4. Transmitting Boundary Conditions 

In computational seismology we usually want to compute over a region with 
artificial boundaries, simply to keep the computational problem to a reasonable size. 
Thus, we want to impose boundary conditions which let waves pass out without 
reflection. In one space dimension this is easily accomplished, as mentioned earlier, 
by keeping the incoming characteristic variables constant in time. In several 
dimensions, though, this is harder to accomplish because waves come in over the 
light cone, and we can’t handle all incoming directions at once. Engquist and Majda 
[34] introduced an approximate method for suppressing reflected waves over a 
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specified range of angles. They worked out these boundary conditions for elasticity in 
their paper (Engquist and Majda [35]). Further expansion in this direction may be 
found in Clayton and Engquist [26a). In a typical application on a rectangular 
domain they use boundary conditions along a side tuned to transmit waves coming in 
at near normal incidence. At a corner they make the boundary transmit waves 
coming near 45” to an edge. Their papers contain computational examples showing 
the amount of reflection for waves meeting the boundary at angles different from 
ideal. 

Engquist and Majda remark that one could tune the boundary conditions so that 
all spherical waves emitted from a specific point source are transmitted without 
reflection. Other waves would be reflected to some degree. They do not work out the 
details, but this could easily be done using their method. It is clear that for some 
seismological applications this approximation is more appropriate than the 
assumption of near-normal incidence. 

2.5. Finite-Element Methods 

The comments we have made on finite-difference methods apply also to finite- 
elements methods. In fact, it is best to regard finite-element methods as a particular 
class of generalized finite-difference methods (Swartz and Wendroff [84]). Finite- 
element methods are usually not dissipative (unless artificial viscosity is added 
deliberately), so that they exhibit numerical dispersion with a wide range of group 
velocities (Chin, Hedstrom, and Karlsson [22]). The equations of linear elasticity 
may be written either as a system of second-order equations or as a system of Iirst- 
order equations. When the finite-element method is used on the first-order represen- 
tation, it happens (just as in the finite-difference case) that we need to specify extra 
numerical boundary conditions beyond those determined by the physics. Trefenthen’s 
analysis of this problem for difference schemes applies just as well to finite-element 
methods (Trefethen [89, 901). A n analysis of this question for finite element methods 
was given by Strikwerda [83], but Strikwerda’s analysis should be combined with 
Trefethen’s insight for an understanding of the mechanism operating here. 

Let us use the acoustic wave equation in one space dimension to explain why the 
finite element method might need extra boundary conditions. Most commonly, the 
finite element method uses piecewise-linear basis functions dk as in Fig. 1. We 
approximate 24 in 

by finite elements 
Utt = c 2 u,, (2.11) 

u = c %O) h(x), (2.12) 

multiply by $j, and integrate over x. Note that substitution of (2.12) into (2.11) is 
only formal because &’ doesn’t exist in the usual sense. This difftculty is resolved by 
a formal integration by parts 

j ~~$1: tij dx = - j &(c2fijj)’ dx, 
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FIG. 1. Finite-element basis function ok. 

and this latter integral is well defined if c* is differentiable. Thus, the finite-element 
method for (2.11) is 

Note that in static problems it is common to derive the finite-element method via a 
minimum principle. For time-dependent problems we have to use an approach 
equivalent to that given here. 

In order to better display some of the peculiarities of finite-element methods, we 
calculate the integrals in (2.13) when c is constant and the mesh is uniform 
Xk+l -xk= h, 

(dk-, + 4dk + dk+ ,)/6 = c2(ak+ 1 - 2ak + a,-,)/h*. (2.14) 

For an initial-boundary-value problem on 0 < k < K for (2.14) we need to specify 
initial data a,(O) and (ik(0) and boundary data a,,(t) and UK(t). Since u(x,, t) = a,(t) 
in (2.12), this is just the same data as are suitable for (2.11). 

For the sake of comparison let us present the finite-element method for the lirst- 
order version (2.9) of the acoustic wave equation. If we replace u by 

u = c bk(t) #ktX) 

and use (2.12) to represent u in (2.9), multiply by #j, and integrate, we get the linite- 
element equation 
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In the particular case when c is constant and the mesh is uniform, this becomes 

(h-1 +4h+h+J/6= (bt, -LA/P), 

(&PI +4b’k+bk+1)/6=c2(ak+, -akp1)/(2h). 
(2.15) 

As we saw for (2.10), we find that at a boundary, say k = 0, for (2.15) we must 
specify both ~(0, t) = a, and ~(0, t) = b,, which would overdetermine (2.9). Thus, one 
of these boundary values has to be extrapolated from the interior. 

For historical reasons finite-element programs tend to have more flexible grid 
structure than finite-difference methods. This is because the first use of finite-element 
methods was in the modeling of structures, and a lot of effort was devoted to making 
the grids fit the structures. Certainly, finite-difference grids can be just as flexible, but 
so far, flexible finite-difference grids are mainly found in aerodynamical computations 
(Thompson et al. [SS]). The need for flexible grids arises, for example, when we want 
to compute seismic waves in a structure made up of two materials separated by a 
dome-shaped boundary. Experimental computations show that in this case we must 
ue a grid adapted to the boundary surface in order to avoid numerically induced 
scattering from the interface. 

We must comment on some practical special aspects of finite-element methods. A 
finite-element method converts a partial differential equation into a large system of 
ordinary differential equations, one equation for each grid point. If an explicit method 
is used to solve this system of ordinary differential equations, then the time step must 
be significantly smaller than would be needed for a standard finite-difference method 
(Chin, Hedstrom, and Karlsson [22]). This turns out to be a minor inconvenience, 
though, because finite-element methods naturally call for implicit methods. This is 
because the system of ordinary differential equations to be solved is always of the 
form seen in (2.14) and (2.15) 

A2.i = f(u). 

Here, A is a nondiagonal matrix called the mass matrix. Thus, if un denotes an 
approximation to u(x, fn) then a typical difference scheme in time will be something 
like 

A@“+’ - #“)/At = ef(u”+‘) + (1 - 8)f(u”), (2.16) 

where 0 is a parameter. We see that even for an explicit scheme B = 0, we have to 
solve a matrix equation AU”+ ’ = B at every time step. It is true that some two and 
three-dimensional finite element codes simply replace A by a diagonal matrix. This is 
called “mass lumping.” In mass lumping, off-diagonal terms in the mass matrix are 
moved to the diagonal so that the lumped version of (2.14) is 

ti~=c2(uk+l - 2a, + ak- ,)/h’, 
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which is just the common finite-difference scheme (2.1). Similarly, mass lumping of 
(2.15) produces (2.10). The effect of mass lumping is to reduce accuracy (Cullen 
[ 3 I]) in exchange for a reduction in computer time. It turns out to be about an even 
trade provided that the matrix problems are solved by an iterative method. 

As we have seen, the finite-element method naturally leads to the necessity to solve 
a matrix equation at each time step. There are, of course, many ways to solve matrix 
equations. The finite-element is such that in each row of A only the diagonal entry 
and a few of the off-diagonal entries are nonzero. In fact, for l-dimensional problems 
the nonzero entries all lie in a band about the main diagonal, and the same is true of 
the entries coming from Bf(zP”). Thus, Gaussian elimination is fast and cheap for 
the l-dimensional finite-element time-integration matrix problems. 

In two space dimensions it has been standard practice in finite-element codes to 
still use Gaussian elimination, even though the nonzero entries of A are more widely 
scattered. Finite-element practitioners have devoted much effort to developing 
automatic algorithms for reordering the unknowns so as to minimize the storage and 
work required in the Gaussian elimination, On sequential computers this approach is 
adequate for small problems, but iterative schemes are much easier to vectorize and 
they require far less memory capacity. For three-dimensional problems it is 
imperative to use iterative methods for solving the matrix problems, even on 
sequential computers. It should be remembered that in these problems the iterative 
scheme need not be carried out to complete convergence and, in fact, it is foolish to 
do so because the difference scheme itself has some inaccuracy (Cullen [ 3 1 I). For a 
vector computer, the advantage of iterative schemes over Gaussian elimination is 
even greater. 

We may say that the finite-element method is a reasonable thing to use in 
computational seismology provided that we do not use mass lumping, that we use an 
implicit scheme to do the integration in time, and that we use an iterative scheme to 
solve the resulting matrix problem. The main advantage of the finite-element method 
is that it usually has the capacity to generate a grid adapted to the geometry. It may 
be noted that the finite-element method used by Lysmer and Drake [ 6 1 ] uses mass 
lumping and an explicit time-integration scheme. 

2.6. Spectral Methods 
As we have noted, the main disadvantage of finite difference and finite-element 

methods for computational seismology is their numerically induced dispersion. One 
way to avoid this problem is to use the spectral method, in which a spatial derivative 
is computed by taking a Fourier transform, multiplying by it, and Fourier trans- 
forming back. Because fast Fourier transform routines exist, this method is not as 
expensive as it might seem at first glance. Furthermore, on a rectangular domain the 
process is easily vectorized. For meteorological computations the spectral method is 
quite popular and it is competitive with finite-difference methods (Cullen et al. [30]). 
It should be remembered that on the globe boundary conditions are no problem. In 
seismology, however, boundary conditions are typically incompatible with spectral 
methods. 
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2.1. Current Research in Numerical Methods 

For finite-difference methods the primary need is the ability to easily generate grids 
compatible with the geometry, as is currently done with finite elements. Certainly, 
one could pull the grid-generation portion out of a finite-element code and use it for 
finite differences. (In effect, this is what mass lumping in a finite-element code boils 
down to.) Some adaptive grid codes do exist (Thompson et al. [88]), but they are not 
yet used in seismology. 

In finite-element codes we have to replace Gaussian elimination with an iterative 
method, as is standard in finite-difference methods (Hageman and Young [39]). It is 
not clear at this point what are the best iterative schemes for these problems. The 
theory of iterative schemes is well developed for positive-definite symmetric matrices. 
If the equations of linear elasticity are written as a second-order system, the resulting 
matrix problem for an implicit-time scheme for the finite-element system is symmetric 
and positive definite, and we may use any standard iterative scheme. If the elastic 
equations are written as a first-order system, though, the corresponding matrix for a 
time-implicit scheme for the finite-element method has a matrix which is positive 
definite but not symmetric. The mass matrix A in (2.16) is symmetric and positive 
definite. The term Bf(u”+‘) ’ y is s mmetric and negative definite for the second-order 
equation (2.14), but for the first-order system (2.15) it is antisymmetric. Thus, from 
the point of view of the matrix problem we ought to use the second-order form of the 
partial differential equations. From the point of view of accuracy, though, the lirst- 
order representation is better, because the finite-element method is more accurate for 
first-order equations than for second-order equations (Thomee and Wendroff [87]). 
This is a question which can only be settled by experience. 

For the longer term for both finite difference and finite-element methods, we should 
keep in mind the ongoing developments of adaptive-grid methods which 
automatically adjust the grid to put a fine mesh wherever resolution is needed. For a 
survey of current research in this direction see the review article (Hedstrom and 
Rodrigue [43]). For seismological computations it seems likely that some form of 
wave tracking is necessary. 

3. INTEGRAL TRANSFORM METHODS 

Integral transform methods can provide an accurate and efficient technique of 
obtaining the solution to the equations of elastodynamics in certain regions of the 
parameter space. Any particular approximation method for the integral will, however, 
be very inefficient for some values of the parameters. For example, efficient and 
accurate solutions may be obtained using asymptotic expansions of integrals for the 
far field and long-time solutions. On the other hand, the modal expansion is 
appropriate for the long time low-frequency response in a stratified medium. In this 
range of parameters, the solutions have simple representations. The midfrequency or 
intermediate regions of the parameter space are inaccessible to approximate analytic 
treatment but are favorable to direct numerical solutions. 
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Historically, the integral transform methods have been used because they give 
integral representations of the solution that can be exploited using asymptotic 
expansions to extract details of the physical behavior of waves in stratified media. A 
familiar form of the integral transform representation is given by Woodhouse [97], 

dw exp(iwt) Irn c @RF + I%: + @I’:) k dk, (3-l) 
0 m 

do exp(iwt) jm c (FRr + 9s: + ?I;) k dk, (3.2) 
0 m 

where 

Rr = e,J,(kr) exp(M?), 

Sr = i V, [J,,,(kr) exp(im@], 

Tr = - k e, x V, [J,,,(kr) exp(imO)], 

and 
1 a 

VI =e,-,$+e, - 
i i r Z’ 

Clearly, the representations (3.1) and (3.2) exhibit some of the inherent difficulties 
associated with their evaluation over the complete parameter space. The Bessel 
function is a highly oscillatory function for large arguments, and it is well known that 
the evaluation of oscillatory integrals presents difficulties. Further, the elastic wave 
response is causal, giving rise to difficulties in numerically evaluating the inverse 
Hankel and Fourier transforms. For example, the numerical evaluation of the integral 
must be done over a finite interval (k,, k2). If the interval is too small, not only do we 
leave out significant physical arrivals, but we also produce aliasing, leading to 
noncausal arrivals at the beginning of the seismogram that many distort the signal of 
interest. The same phenomenon occurs in FFT analysis if the signal being modeled is 
larger than the allotted time window. A third problem that is not explicitly exhibited 
in Eqs. (3.1) and (3.2) is the behavior of the terms in the integrand multiplying the 
Bessel function, i.e., the behavior of 0, p, @, p, L?, and !?. These functions contain 
singularities on the real (wave number) k axis. Obviously, a straightforward 
quadrature along the real k axis can be inaccurate. For a discussion of the difficulties 
involved in the numerical quadrature see, for example, the papers of Chapman [20], 
Herrmann [45], Thigpen [86], Kennett [56], and Kind [57]. 

From Eqs. (3.1) and (3.2) we see that the solution to the equations of 
elastodynamics progresses in two stages. We construct the response functions 
(0, r, @ by solving a two-point boundary value problem, and then we generate the 
displacements by integrating this response over wave number and frequency. 
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In this section we discuss these two problems separately to elucidate where the 
method gives accurate solutions and why it is inefficient in other regions of the 
parameter space. From this discussion, it will become apparent that a certain number 
of points per wave length is necessary to adequately represent the wave propagating 
in a medium, regardless of the technique used to generate the response. In the finite 
element and finite-difference methods, this fact is well recognized. Integral transform 
methods are no exception. The need for resolution manifests itself through the step 
size used to sample the integrands in the systems (3.1) and (3.2) over different 
regions of the parameter space. 

3.1. Boundary Value Problem 

Using the eigenfunction expansions given by Eqs. (3.1) and (3.2), we obtain from 
the equations of elastodynamics in a cylindrical coordinate system the system of 
ordinary differential equations 

d 
dz 

or 

= 

0 

-k 

-po* 

0 

0 

0 

1 
1 + 2/l 

0 

0 
1 

u 

0 k 

-pw* + 4k*p 2P 1 - ~ 
1 + 2&u 

dB 
-=AB+S 
dz (3.3) 

for the P-W system. A similar but a smaller system exists for the SH case. The 
boundary conditions are: (1) no incoming wave from infinity, and (2) zero traction 
vector (F, s”> at the free surface. The above system constitutes a two-point boundary 
value problem. The boundary value problem for Eq. (3.3) in a stratified medium may 
be solved directly using a number of well-known numerical methods (Keller [51, 
521). It may be solved also by approximating the coefficients of the differential 
equation so that the resulting boundary value problem is easily solved (Preuss [77]). 

The constant layer approximation is an example of approximating the coefficients 
of the differential equation. Here, the continuously stratified medium is approximated 
by a piece-wise constant function. The resulting equation has constant coefftcients in 
each subinterval. Preuss [77] gives a precise error estimate for this method. 

Let us change coordinates within a layer, 

Bi = Divi, i = 1, 2 ,..., N. 
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Substituting into (3.3) we get 

(3.4) 

and if 

va k V, k 

D= 
--K -Vb k vl? 

-p(2k2 -co’//?‘) -2,ukv, p(2k2 - w’/p’) &kv, 

2@3), ,u(2k2 - 0’//3’) bkv, p(2k2 -o’//?‘) 

then A is the diagonal matrix 

A = diag(-v,, -vg , v,, vo) 

with 

v, = (k* - w2/a2)1’2 and vb = (k* + w*//?~)~‘*. 

We note that the matrices D and A contain radicals v, and vq. Branch points exist 
at the four points k = *w/a,+ r, f~/&+ r , at which v, = 0 or vq = 0. Here, aN+ 1 and 
P ,,,+, are the P and S wave speeds in the underlying half space. When the choice of 
branches of va and vb is unrestricted, the integrands in Eqs. (3.1) and (3.2) are four- 
valued functions of k and must be represented by a four-leaved Riemann surface. We 
choose branches such that Im v, > 0 and Im vq > 0 to restrict integration to the top 
leaf. With this restriction, the branches of v, and vq are 

v, = pTq2, k > IWl/a, 

= i dw~, k < [WI/a, 

vq = p-=qF, k > 14/P, 

= i &w, k < I~I/P, 
a=dGTUZ 

and 

P=diF. 

Thus, in the propagator formulation outside the source layer, the solution of (3.4) 
may be expressed 

v’(z) = exp[A(z -ziPI)] Vi(zi+-,), ziPI < z < zi. (3Sa) 

The solution 

B’(z) = D’V’(z) (3Sb) 
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contains growing and decaying exponentials for evanescent waves. Using the 
continuity of the displacement-traction vector at the layer interfaces, the solution at 
any level zi may be obtained from the solution at the adjacent interface zi-, thus 
giving a matrix two-term recursion relation. This results in the solution being made 
up of the product of matrices. This is the technique generally used in seismology and 
represents the Haskell matrix formulation [40]. In the Haskell formulation the 
response at the interface between the bottom layer and the underlying half space is 
related to the free-surface response by products of layer matrices. This initial value 
technique is numerically unstable for high frequencies. The solution is a linear 
combination of growing and decaying exponentials, giving rise to an ill-conditioned 
computational procedure for wave amplitudes. The source of this difficulty is a loss 
of significant digits in forming the linear combination of exponentially large terms of 
nearly equal magnitude and of opposite signs. The points of this discussion is that the 
cancellation problem arises naturally in the initial value (or shooting) technique. 

From a mathematical point of view, two-term matrix recursion relations tend to 
have solutions with different growth rates and, unless special measure are taken, 
numerical methods lose all but the dominant solution (Van der Sluis [92] and 
Mattheij [63, 641. 

In seismology one attempt at avoiding the loss of precision is by the computation 
of minors of the layer matrices directly, rather than from the elements of the Haskell 
layer matrices. To see how this works, we note that the columns of the matrix D are 
the eigenvectors of the matrix A corresponding to the eigenvalues fv, and fv,. 
Hence the columns of D correspond to elementary stress-displacement vectors for up 
and downgoing P and SV waves. Now, suppose we solve system (3.3) by a shooting 
technique, beginning at z = zN+ I for a fixed value of o and a trial value of k. Since 
the system must have only downgoing or decaying waves as z -+ 03, the solution for 
z>zrv+1 must be a linear combination of the P and SV waves, 

corresponding to P and SV waves, respectively. We propagate B”’ and B”’ 
simultaneously from z = zN+ , to z = 0. The solution to the system is a linear 
combination of B”’ and B”’ for which the stresses must vanish at z = 0. 
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The determinant of the propagated system must vanish, i.e., 

D(w, k) = det 
p p 

s”(,J p I 
= 0. 

Z=O 

Hence, the solution is obtained by varying k until the determinant D(w, k) vanishes. 
Although the determinant is not large, the individual elements in the determinant are 
large and many significant figures are lost in calculating D(w, k). 

Instead of solving for the elements of B UC) k = 1, 2, we may set up equations for , 
the 2 x 2 minors of B I”’ We define the 2 x 2 minors by . 

Y,, = E,~BPB~, cz,p= 1,2; k= 1,2,3,4, 

where the alternating tensor E,~ is defined as 

0 1 
&= [ 1 -1 0’ 

From the above definitions, the determinant D(o, k) is given by the value at z = 0 of 
Yj4(w, k), where the 2 x 2 minors satisfy the fifth-order system 

Yl2 

y13 

d Y ‘;i; 14 = 
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Thus the minors are propagated from interface to interface so that disproportionate 
terms do not appear. This and other modifications to the Haskell formulation, which 
address the problem of loss of precision with different degrees of success, may be 
found in the works of Knopoff [58], Dunkin [33], Gilbert and Backus [37 ], Burridge 
[ 131, and Ab o -Z ena [ 11. It is not unreasonable to find that such special tricks do not 
completely solve the loss-of-precision problem. This is because the minors also satisfy 
a matrix two-term recursion relation with some growth characteristics. In other 
words, the minors also have growing and decaying tendencies which must be iden- 
tified in order to produce a robust computational algorithm. 

In the literature on numerical solutions to two-point boundary value problems it is 
known that multiple shooting techniques can be used to circumvent the difficulties 
caused by growth of the solutions of the initial value problems to be solved (Keller 
[51]). For the system (3.3) we prefer the parallel shooting technique in that the 
difficulty can be eliminated while at the same time it gives a clear physical inter- 
pretation of the wave field (Chin, Hedstrom, and Thigpen [23]). In the parallel 
shooting variant, the boundary value problem is partitioned into subproblems, and 
the growing solutions in each subinterval are scaled so that the solutions are bounded 
in magnitude by 1. In other words, we choose a local basis of the linear space of 
solutions of the homogeneous problem to be uniformly bounded in magnitude by 1. 
The resultant linear system of equations for the coefficients of the upgoing and 
downgoing waves is well conditioned. 

To get a flavor for this formulation, Eq. (3.5) may be written in the parallel 
shooting formulation 

(3.6) 

The geometric interpretation is shown in Fig. 2. 
In (3.6) the growing exponentials are eliminated. Application of the stress-free 

boundary conditions at the free surface and the radiation condition at infinity for a 

FIG. 2. Upgoing and downgoing propagators. 
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layered half space containing a buried source leads to a matrix formulation for the 
two-point boundary value problem. 

A natural partitioning of the coefficient matrix leads to a block tridiagonal matrix 
in which off-diagonal blocks contain decaying exponentials in the evansescent regime 
and the diagonal blocks contain the interface matrices. The vanishing of the deter- 
minant of the first matrix on the diagonal gives the Rayleigh wave for the half space, 
and the vanishing of the determinant of any other diagonal block gives a Stonely 
wave; see Chin, Hedstrom, and Thigpen [25]. 

The advantage of the block tridiagonal formulation of the coefficient matrix is that 
this system is well conditioned. A number of methods can be applied for its solution. 
For example, the block Gauss-Jacobi iterative method gives a partial generalized ray 
expansion of the solution (Cisternas, et al. [26]). The system may be solved by direct 
methods such as block LU decomposition or its equivalent, the discrete invariant 
imbedding method. Discrete invariant imbedding has an immediate physical inter- 
pretation in that the solution is written in terms of overall reflection and transmission 
coefficients. Kennett’s [53] technique is just the discrete invariant imbedding 
algorithm. 

For vertically inhomogeneous media, the propagator (3.5) is not particularly 
useful, as it will be developed in a matrix power series or a matrizant. Treating the 
differential equations (3.3) directly, Chapman [ 191 has developed an approximate 
solution to the vertically inhomogeneous medium by using the Bremmer series 
(Bremmer [ 111, Atkinson [7]). The Bremmer series is obtained by changing variables 
and by using function iteration to solve the resulting ordinary differential equations 
(3.3) with the WKB solution as the initial iterate. It is clear that the Bremmer series 
is not uniformly valid in the neighborhood of turning points. The nonuniformity can 
be circumvented by using a uniformly valid asymptotic expansion (Chapman [ 181, 
Wasow [95]) as an initial iterate. Alternatively, we can return to the system (3.3) and 
solve it by some purely numerical method such as COLSYS (Ascher et al. [5]), 
PASVA3 (Pereyra [ 74]), or SUPORT (Scott and Watts [82]). The point to 
remember is that methods differ in efficiency, stability, and ease of application. Any 
method used to solve the system (3.3) for the response functions should provide a 
measure of its accuracy and a definition of its region of applicability in the parameter 
space. 

In summary, the construction of the transformed response functions requires that 
several problems must be addressed in order to obtain an accurate stable solution. A 
basic difficulty stems from the fact that the earth is not made up of homogeneous 
layers. An exact analytic solution by the propagator matrix method requires the 
constant layer approximation. For a vertically inhomogeneous medium, the structure 
must be replaced by the constant layer approximation for the propagator method to 
be applicable. High-quality two-point boundary value problem solvers exist which 
treat vertically stratified media by numerical methods. Finally, one should not restrict 
oneself to a single technique to solve the problem for the complete parameter space. It 
is more efficient to use a family of techniques and to select according to model 
problems whose numerical solution is well understood in the literature. 
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3.2. Inverse Transforms 

The form of the integrals to be evaluated in the inverse transformations is [see 
Eqs. (3.1) and (3.2)] 

11 O3 I‘ exp(iot) dw I 
cc g(w, k) 
0 WA k) 

J,(kr) dk. 
-cc 

The evaluation of the above integrals is replete with difftculties and has been a major 
topic in theoretical seismology. First, the integration along the real k axis must be 
truncated for a practical numerical evaluation. Second, the function f(w, k) = 
g(w, k)/D(w, k) has branch points (points where V, = 0 or vb = 0) and poles (zeros of 
D(w, k)) on the real k axis, and it is highly oscillatory in some parts of the parameter 
space considered. Third, the Bessel function is highly oscillatory for large arguments. 
An additional complication is that aliasing occurs in both k and o integrations. 

In general, one may use one or more of several techniques to evaluate the double 
integral transforms depending on the frequency and distance range desired. The 
integrals may be evaluated by asymptotic expansions, by expanding in terms of 
normal modes, or by direct numerical quadrature. Asymptotic expansions are 
applicable for large source-receiver distances, high frequencies, and large times after 
the source has been initiated. Asymptotic expansion techniques use stationary phase 
or steepest descent methods (Ben-Menahem and Singh [9], Chapman [20], Bleistein 
and Handelsman [lo], Jones [47], and Olver [70]). A solution in terms of normal 
modes may be obtained for large source-receiver separations and low frequencies. We 
next examine briefly different techniques used to numerically evaluate the double 
transform. 

3.3. Shifting off the Axis 

In order to avoid numerical difftculties caused by the poles and branch cuts on the 
real axis, there are two almost equivalent ways to make the path miss them: by 
moving the path or by moving the poles and saddle points. If the path is moved into 
the complex plane, mathematically, the integrals are equal. Phinney [76] did some 
computations with this method but there is no theory to guide the choice of the 
distance to move the path off the axis. In fact, the process is equivalent to a filtering 
and its inverse, in that more information is lost the farther off the axis the path is 
taken. 

The other way that the poles and branch points may be separated from the path is 
by adding artificial attenuation in analogy with artificial viscosity in finite-difference 
and finite-element methods. The mechanism used is that of making the modulus 
complex (Kennett [54]). If the modulus does not satisfy the Kramers-Kriinig 
relation, the solution is no longer causal. In any case the main effect is on the long- 
time behavior. The main difftculty with this method is that we do not know how 
much attenuation to introduce; we want to put in enough to reduce the numerical 
difficulties but not so much that the solution becomes overly smoothed. The paper by 
O’Neil and Hill [ 7 1 ] has looked at this question a certain amount. 
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The adherents of these methods feel that they remove the numerical difficulties 
(Apse1 [4], Kind [57], K ennett [56]). It is clear that for some problems this is 
correct, but we do not know the range of validity. 

3.4. Distortion of the Path 

From a numerical point of view it is better to make a larger distortion of the path 
than that used by Phinney as discussed in Section 3.3 because this replaces 
oscillatory exponentials by decaying ones. The best path is one that goes through 
saddle points and around the branch cuts. We know how to do that for one layer over 
a half space (Lapwood [59], Newlands [66]). F or many layers, however, this is very 
difficult if not impossible to do because the integrand is the solution of a matrix 
problem. Herrmann [45] and Wang and Herrmann [93] made a stab at choosing a 
path, but they still had numerical difftculties. 

Let us point out that the location of the branch cuts is at our disposal. Most 
geophysicists use the cuts introduced by Lapwood [59], even though the integrals 
along these cuts are highly oscillatory. In electromagnetic theory one takes the cuts 
straight up or straight down (Jones [47]). We still don’t know where to take the cuts 
in geophysics. Ben-Menahem and Singh [9] take the cuts going straight down. 

When we move the path, we must take into account the residues at the poles which 
the path crosses. These residues represent the trapped modes and the leaky modes, 
depending on which sheet of the Riemann surface the path is on. In order to find 
these poles, we must find the zeros of the determinant of the coefficient matrix for the 
amplitudes of the upgoing and downgoing waves. Schwab and Knopoff [79], Harvey 
[41], and others claim to have fast methods for finding these zeros. 

3.5. Generalized Rays 

By looking in the proper way at the matrix problem for the amplitudes of the 
upgoing and downgoing waves, we obtain the generalized ray expansion. From the 
point of view of numerical analysis we are doing a block Gauss-Jacobi iterative 
scheme for a matrix problem, and each pair of iterations gives a complete set of 
multiples. A similar decomposition has been given by Wu and Norwood [98] in 
terms of three canonical scattering problems. The difficulty with this method is that 
because of mode conversion it gives far too many rays. Mode conversion further 
complicates the situation. The traditional geophysical approach (Helmberger [44], 
Wiggins and Helmberger [96]), is not based on a systematic iterative development of 
the linear system. 

3.6. Ray-Mode Methods 

The trouble with ray methods is that it takes too many rays to represent the low- 
frequency aspects of the solution. The trouble with mode expansions is that it takes 
too many modes to represent the high-frequency aspects of the solution. 
Consequently, it is natural to use a hybrid ray-mode expansion. For SH waves this 
has been done by Kamel and Felsen [49]. 
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3.1. Continuous Gradation 

If the stratified medium is regarded as having continuous variation of material 
properties instead of being piecewise constant, the Fourier integral transform in time 
and a vector-harmonic expansion in space produces a two-point boundary value 
problem for a system of ordinary differential equations. If the coefftcients of this 
differential equation are approximated by piecewise-constant functions, we get the 
matrix problem considered earlier. Cormier [27] used a piecewise-linear approx- 
imation of the coefficients and he was able to obtain a high-frequency asymptotic 
approximation to the solution via Airy functions. It would be nice to be able to use 
higher-order approximations to the coefficients, but the resulting two-point boundary 
value problem is just as difficult to solve as the original one. We can solve this two- 
point boundary value problem and Ascher and Spudich [6] do just that. 

This approach still leaves us with the same double integral to evaluate as we had in 
the case of a stack of homogeneous layers. We still have modes, and they are more 
expensive to compute than in the case of homogeneous layers because we need to find 
eigenvalues of a differential equation. Furthermore, we have no idea where to take the 
path of integration. 

3.8. Special Methods 

We discuss here some schemes which do not fit into the categories discussed 
earlier. One is a mixed integral transform and finite difference or finite-element 
method. The other method uses different approximations in thin layers and thick 
layers. 

Olson, Orcutt, and Frazier [69] use a discrete Hankel transform in the radial 
direction, leaving a hyperbolic partial differential equation in depth and time. They 
then solve this partial differential equation using a finite-element method. This 
approach is very similar to that of Alekseev and Mikhailenko [2], except that this 
later paper uses finite differences for the partial differential equation. The advantage 
of this method is that it permits an arbitrary variation of modulus with depth. The 
main disadvantage is that the schemes for the partial differential equation have 
inherent numerically induced dispersion, as discussed in Section 2. Another difficulty 
is that because a discrete transform is used, we get an expansion in terms of the 
radial eigenfunctions and we have to know the eigenvalues. In these papers the 
exterior boundary conditions are reflecting, thus limiting the validity of the solution. 
In summary we may say that this method is good for smooth solutions for times 
before the first reflection. 

Another special method is that of Daley and Hron [32] which used reflectivity in 
thin layers and rays in thick layers. This avoids the plethora of rays which arises 
from the multiple reflection in the thin layers. As in the ray-mode method, this is an 
attempt to provide an approximation which is valid both at high and low frequencies. 
It seems promising, but perhaps not as good as the ray-mode method. 
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4. RAY TRACING METHODS 

In contrast to the discrete coordinate methods (finite difference and finite element) 
and the integral transform method discussed, we find relatively few discussions of the 
numerical solution of the ray tracing equations. This section has been purposely 
expanded to give a thorough discussion of the computational problems in asymptotic 
ray theory. 

The method of solution depends on the intended application. For example, 
inverting travel time data to study the velocity structure requires ray tracing between 
specified locations of the source and the receiver. To see how the rays are affected by 
the velocity structure, we launch a bundle of rays from a given point and trace their 
path through the medium. This gives a general picture including the location of 
caustics and shadow zones. Additional insight can be obtained from a ray amplitude 
computation. 

In what follows we examine the effect of these considerations on choosing methods 
for doing ray tracing. 

4.1. Summary of Asymptotic Ray Theory 

In this section, the asymptotic ray theory or the ray series method is discussed. It 
is an extension of the Liouville-Green or the WKB method in the asymptotic solution 
of ordinary differential equations to partial differential equations. In recent years, 
these techniques for solving problems with disparate scales are called the multiscale 
expansion methods. 

We begin with the postulate that the problem in question has disparate scales. For 
example, in an inhomogeneous medium the wave speeds may vary more rapidly in 
some preferred direction giving rise to a layering effect. Let the characteristic length 
associated with a given variation of the material property or with a distinguished 
feature of the structure 4 be denoted by L,. Then the asymptotic ray theory is 
developed for phenomena whose characteristic wavelength L is small compared to the 
shortest characteristic length of the structure 

d<L=minL,. m 

Formally, we define the following dimensionless variables denoted by tildes 

xi=LJi, ui = uoui, t=k,l 
c 

where for a generic variable 4 on the domain D E R3 
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and c is a typical wave propagation speed. Then, the elastodynamic equation becomes 

It is clear from the development that Lo/poc2 and ~o/poc2 are order one quantities. 
Consider a development of the solution of the elastodynamics equation in an 

asymptotic series 

Ci= 2 U;“‘(Z) ckF 
k=O 

(4.1) 

where E = c/wL and w is the frequency of interest. Here, c/w is the wavelength 
associated with the phenomenon in question, and therefore E is a ratio of the 
wavelength to the shortest characteristic length associated with the structure. This is a 
small number (E < 1) by assumption. 

The development of the solution is straightforward and may be found in the 
literature, for example, Karal and Keller [50], Babich and Alekseev [S], and and 73345aAT3a 3  Tr -017.0667 00i], Karal 
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Equation (4.2) written in component form is given by 

-P+@+P)7T,+P7*k7,, @W7,17,2 oL+P)7,*?3 
u(O) 1 

@+/+,I 7.2 --p+@+P)++W,,t,, @+P)~,z~J 
(~+P)7,1?3 @+P)~,z~J -p+@+47~,+P7,,7,, I[ 1 U’O’ 

2 =o 

u$O’ 

or 
AU”’ = 0. (4.5) 

Note that A is a symmetric matrix. For (4.5) to have a nontrivial solution, the deter- 
minant of the coefficient matrix A must vanish. This yields 

Hence, we have two wave speeds 

1 
‘.k7,k = 2~ a2 = (A+ G)/P, (4.6) 

and 

1 
7.k7.k = 73 

P 
P” = ,4P 

Equations (4.6) and (4.7) are known as the eikonal equations. They are first-order 
hyperbolic equations and may be solved using the method of characteristics. The 
result is a system of ray tracing equations 

dx. 
--L = v’p, 
dt 

and 

dPi 
dz --’ 

-, dv 
&’ 

i= 1,2,3, (4.8) 

where v = a or j3, and 7 is the travel time. Note that 

7,k 7,k = l/b’ 

is a double root of the scalar equation det(A) = 0. Moreover, U”’ still must be deter- 
mined. 

To calculate U(O), we must solve the next order equation, Eq. (4.3), which is a 
system of linear equations with a singular coefftcient matrix 

AU”’ = M(U”‘). (4.9) 
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From the theory of operators in linear spaces (Friedman [36]), the Fredholm alter- 
native holds: the nonhomogeneous equation (4.9) has a solution for a given vector M 
if and only if M is orthogonal to every solution of the adjoint homogeneous equation 

A*Z =O. 

Since A is real and symmetric, it is self-adjoint. Let a vector in the null space or the 
kernel of A be called a kernel vector. Then, the kernel vector Vta’, corresponding to 
the root of the secular equation giving the compressional wave, is (r,,‘, ru,z, r,,3). 
This is just the normal to the wave front of the compressional wave. It is clearly in 
the direction of the compressional wave propagation. The two remaining kernel 
vectors V(O), corresponding to the double root of the secular equation giving the shear 
waves, lie in the tangent plane to the wave front r4(x). This is because 

C-P + P7,k7,k) &ilm Ul”‘7B,m = O* 

Here silm is the permutation symbol. Moreover, the vectors VLD’, k = 1, 2, may be 
taken to be orthogonal. 

It can readily be shown that the kernel vectors VCrr’ and Vlp’, k = 1, 2, are 
orthogonal along the ray path x(r). This follows from the fact that at any point r* 
along a ray path x(r), VCa’(r*), Vib’(r*), k = 1, 2, are the eigenvectors of a real and 
symmetric acoustic tensor B with eigenvalues a(r*) and /?(r*). The acoustic tensor B 
is given by 

1 

(1 +/e: +iu%% @ +rU)n,% (A +P)n*n, 
(A +Pu)%% (J- +Pu) 4 +Pn,% @+Pu)n,n, Y 
@+Pu)%n, @ + p> n2n3 (A +P)4+Pv, 1 

where n, = cos ei the directional cosines of the propagation vector at 7 = t*. The 
relation between B and A is A(s*) = B(z*) - p(7*) ~1, where u is the eigenvalue. 
Since B is real and symmetric, the eigenvectors associated with different eigenvalues 
are orthogonal. The triad V’“‘(r*) and ViD’(7*), k = 1, 2, form a basis at any point 
z* along a ray x(5). 

Applying the Fredholm alternative pointwise along a ray x(7), we obtain the 
following solvability conditions 

M(U’“‘) . f+’ = 0 

and 

M(U’O’) . VP’ = 0, k= 1,2, (4.10) 

where - denotes unit vectors. Equations (4.10) are necessary and sufficient for 
Eq. (4.9) to have a solution. The solution has the representation 
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For the higher order equations, equivalent conditions hold, 

and 

q(a) . N(U”-I’, U”-2’) = 0, 

(4.11) 

0:) + N(U U-l), u”-2’) = 0, m= 1,2, I> 2, 

where 

N(U”-I’, U”-2’) = M(U”-“) - L(u”-2’). 

This represents a mathematically pleasing derivation of the transport equations 
(Courant and Hilbert [28]). Note that the ray-centered coordinate system of Cerveny 
and Hron [ 141 follows immediately. As the directions of oiB), k = 1,2, are at our 
disposal, they should be chosen to coincide with the polarizations of the shear waves 
along the ray path. 

Upon solving Eqs. (4.10), it is found that the ray amplitude U”’ for the 
compressional wave is nonzero only in the direction of wave propagation vca). This 
is defined as the principal component of a compressional wave, and the components 
orthogonal to it are defined as the additional components. On the other hand, the 
components along the tangent plane of the shear wave front are called the principal 
components for the shear wave, and the remaining component is called the additional 
componentThe additional component of the zeroth-order shear wave ray amplitude is 
identically zero. The principal components of the zeroth-order ray amplitudes of both 
the compressional and shear waves have identical forms, 

U(O)(r) = U’O’(z ) J(to) P(ro) 4ro) 
O J(r)/$t) er> ’ 

where J(t) and v(r) are, respectively, the Jacobian of the transformation from the 
Cartesian coordinate x into the ray coordinates (5, ql, q2) and the propagation 
velocities for compressional and shear waves. The higher-order ray amplitudes are 
obtained by solving Eq. (4.11). The equations for calculating the ray amplitudes are 
considerably simplified if a ray-centered coordinate is used with the kernel vectors 
coinciding with the polarizations of the shear wave. 

4.2. Numerical Methods for Asymptotic Ray Theory 

We now discuss the computational methods for asymptotic ray theory. The method 
of solution depends on the application. Four possible cases are distinguished: 

(1) ray tracing from a specified source location to wherever it wants to go, 
(2) ray tracing between specified source and receiver locations, 
(3) computing the response from a specified source position along any ray, 

(4) computing the response between specified source and receiver locations. 
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At first glance, case (1) is a subset of case (3). Similarly, case (2) is a subset of 
case (4). Ordinarily we would do some of these cases in sequence. For a given 
postulated structure, we first do case (I), sending many rays out from a given source 
to get a general picture including the locations of caustics and shadow zones. Then 
we might do case (3) to find ray amplitudes or case (2) to pin down which rays 
reach a given receiver. Finally, we would do case (4) to obtain the amplitude at a 
given receiver. 

In practice as our discussion will show, tracing rays alone requires different 
considerations than calculating the response of the medium to a disturbance. The 
latter situation resuires the solution of the ray tracing equations and the evaluation of 
the ray amplitudes along a ray. The added task of computing ray amplitudes is 
extensive and warrants a separate classification. It turns out that the computation 
involved in tracing a ray from a source to a receiver yields the amplitude with a 
simple additional calculation. 

We will discuss initial and boundary value methods for solving the ray tracing 
equations. A discussion on ray amplitude will follow. Then ray tracing using the 
“circular” approximation method is presented. 

4.3. Numerical Solution of the Ray Tracing Equations 

In this section we discuss the numerical solution of the ray tracing equations. The 
method of solution depends on the application. When it is immaterial where the 
receiver is located, as in case (l), then the ray tracing problem should be treated as 
an initial value problem. For applications in which it is imperative that the ray must 
connect between the source and the receiver, as in Case (2), there are two obvious 
approaches: (a) formulate the computation as a two-point boundary value problem 
(Julian and Gubbins [48] and Pereyra, Lee, and Keller [75]) or (b) solve a sequence 
of initial value problems and then interpolate the results to locate the receiver 
position, that is, shoot and interpolate. 

Two point boundary value methods may be divided into two classes, “shooting” 
and “nonshooting” (for want of a better term). The shooting method formulates the 
problem as an initial value problem using the boundary conditions at a given 
boundary, iteratively varying the remaining parameters so that the boundary 
conditions at the other boundary point are satisfied. This may be viewed as the 
finding of a critical set of takeoff angles at the source and total travel time so that a 
ray will reach the receiver. In fact, the shooting method is a systematic version of 
method, shoot and interpolate. In the nonshooting or truly two-point boundary value 
method we begin with an estimate of the solution satisfying all of the boundary 
conditions and iteratively modify the solution until the differential equations are 
satisfied. 

In the shooting method each iterate satisfies the differential equation but not all of 
the boundary conditions. In the nonshooting method each iterate satisfies the 
boundary conditions but not the differential equations. Both methods satisfy the 
differential equation and the boundary conditions when the iterative scheme has 
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converged to the true solution. Because of the iterative process, both two-point 
boundary value methods are computationally expensive. 

For a given velocity structure, there may be no ray, one ray, or a number of rays 
connecting the source to the receiver. This means that the boundary value problem 
may have multiple solutions. Each solution consists of a takeoff angle and the travel 
time or total length of a ray. The question of the existence and uniqueness of the 
solution of the ray tracing boundary value problem has not been solved. 

4.4. Initial Value Problem Formulation 

In this section we give the details of the shooting approach to ray tracing. The ray 
tracing equations are given by 

dx. 2 = v2pi, dPi 
dz=-v 

-* au 
ds 

-3 
axi 

i = 1, 2, 3. (4.12) 

This is a system of six nonlinear ordinary differential equations. Here T is the travel 
time. This system may be reduced by one by using the eikonal equation 

(4.13) 

If the arc length s along the ray path is introduced, i.e., 

(ds)* = dxi dxi 

and 

ds 
z= v, 

then the ray tracing equations become 

dx. 
2 = up,, 
ds 

i= 1,2,3. (4.14) 

Equation (4.14) has been used by Pereyra et al. [75]. 
As an initial value problem, the integration of (4.12) or (4.14) requires six initial 

conditions 

xi(so) = xp, i = 1, 2, 3, and pi(s,) = pp, i = 1, 2. (4.15) 

The sixth initial condition is obtained by using the eikonal equation (4.13) evaluated 
at the initial point s, or ro. Since the raytracing equations are translationally 
invariant, we may set s,, = r,, = 0. The initial values x0 are the coordinates of the 

581/54/L4 



48 CHIN, HEDSTROM, AND THIGPEN 

source while pp, i = 1, 2, are related to the takeoff angles of the ray. The ray path 
originating at the source point xi is, therefore, a function of pp, i = 1, 2. The solution 
of the ray tracing equations is therefore a two-parameter family. The triplet 
(s, py , pi) completely characterizes a ray in R 3. This completes the initial value 
problem formulation if no interfaces are present. 

The inclusion of interfaces complicates the situation. When a wave of compression 
or shear impringes on an interface, mode conversion occurs, namely, two reflected 
and two refracted waves are generated. A complete discussion of the interface 
conditions will take us far removed from the central issue of this report. Cerveny and 
Ravindra [ 151 and Cerveny, Langer, and PgenEik [ 161 give clear and lucid 
discussions. A summary of the results is in order, however. 

Interface conditions depend on the geometry of the interface, the shape of the 
incident wave front, and the order of continuity of the material constants. The order 
of continuity of the material constants is made precise by defining the order of the 
interface. A surface at which the nth derivatives of the elastic parameters are discon- 
tinuous is called an interface of (n + 1)th order. A first-order interface will have 
discontinuous elastic parameters across it. 

For the zeroth-order approximation and a smooth first-order interface, it is found 
that the usual results such as Snell’s law at planar interfaces apply to a curved 
interface provided that the principal radii of curvature are large compared with the 
wavelength in question. More precisely, 

(1) when a P or SV wave strikes a first-order interface, only reflected and 
refracted P and SV waves can appear, 

(2) when a SH wave strikes a first order interface, only reflected and refracted 
SH waves can appear, 

(3) the reflection and transmission coefficients of the principal components of 
the waves are independent of the curvatures, the interface, and the wave front. 
Moreover, they are dependent on the angle of incidence and the material parameters 
at the point of incidence. 

This requires the tracking of the interfaces relative to the ray paths, the application of 
Snell’s law, and the calculation of mode-converted waves. 

4.5. Boundary Value Problem Formulation 

If it is required that the ray passes through both the source and receiver, then a 
two-point boundary value problem formulation is, in principle, more suitable. This 
formulation solves the ray tracing Eq. (4.12) using the r travel time coordinate or 
Eq. (4.14) using the arc length coordinate. The boundary conditions for Eq. (4.12) or 
(4.14) are 

x,(O) = X7) x,(S)=xj, i= 1,2,3. (4.16) 

Note that the total length along the ray path S is an unknown quantity. Thus, it 
would seem that the solution is undetermined. A closer examination reveals that the 
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number of conditions is appropriate for a proper formulation of the two point 
boundary value problem. The solution of (4.14) and (4.16) is 

S and Xi({Xj”}, {xj}), i, j = 1,2,3. 

To explicitly display the total length along the ray S, we define 

s=s?j so that 0 < q < 1. 

Equations (4.14) and (4.16) become 

O<rl<l, (4.17) 

Xi(O) = xy ) x,(1)=x;, i= 1,2,3, 

and 

Here, (4.17) is actually a nonlinear eigenvalue problem since the total length S of the 
ray must be such that the Dirichlet boundary conditions at q = 0 and q = 1 are 
satisfied. This point is clearly recognized by Pereyra ef al. [75] and is missed by 
Julian and Gubbins [48]. Consequently, the comparison by Julian and Gubbins of 
the efficiencies of the shooting and nonshooting methods is invalid. 

We may well use the travel time r as the independent variable and work with 
Eq. (4.12). This becomes 

dx. 
2 = Tv2(x) pi, 
& 

and 

9 = -*& 1 (In v), i= 1, 2, 3, 

r=T& o<r< 1, (4.18) 

where T is the total travel time along the ray path. 
Equations (4.17) or (4.18) may be solved by an initial value technique called the 

shooting method or by a nonshooting method. The shooting method beings with the 
integration of the system of first-order ordinary differential equations (4.17), say, 
with the initial conditions 

Xi(O) = x;, i= 1, 2, 3, 
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and some initial estimates of p,(O), pZ(0), and S. Using the eikonal equation, we have 
~~(0) = ~/(1/v*(O)) - p,(O)’ - p?(O)‘. In terms of W = (p,(O), p,(O), S) the solution 
at q = 1 is ~~(1; W), i= 1, 2, 3. If xj”(l; W), i = 1, 2, 3, satisfy the boundary 
condition xi, i = 1, 2, 3, then xi”‘< 1; W) is a solution of the two-point boundary value 
problem (4.17). Otherwise, we must modify pi(O), p,(O), and S until 

xi(1; P,(O)> P2(‘)3 ‘1 =xIT i = 1, 2, 3. (4.19) 

A Newton’s method may be used to solve (4.19). Let 

Gi=xi(l;W)-x;. 

Then Newton’s method is stated as 

JGWnWnt 1 - W,> = G(W,), 

where ax, ax2 ax3 --- aw, aw, aw, Jc(W)= 3 axz Bx, . I 1 aw, aw, aw, 
ax, ax, ax3 --- 
aw, aw, aw, 

(4.20) 

(4.21) 

To calculate the elements of the Jacobian JG(W), we solve a set of variational 
problems obtained by differentiating the boundary value problem (4.17) with respect 
to Wi, i = 1, 2, 3. The total number of differential equations to be integrated 
simultaneously is 24, eighteen of which are linear. The total number may be reduced 
by four. However, the coefficients of the equations become complicated. Here, the 
trade-off is a simpler function evaluation for a larger system of equations. 

Alternatively, the boundary value problem (4.17) or (4.18) may be solved by 
methods for general two-point boundary value problems. These methods satisfy the 
boundary conditions at each iteration but not the differential equation. It is, therefore, 
necessary to solve a large system of linear algebraic equations. The essential elements 
of a two-point boundary problem solver are (1) quasi-linearization to reduce the 
nonlinear system to a linear one, (2) solution of the resultant linear two-point 
boundary value problem either by some hybrid scheme or by a discrete coordinate 
method, i.e., finite differences, or finite elements, and (3) solution of a linear system 
of equations to obtain the Newton corrections. The quasi-linearization step is a 
Newton’s method in function space. 

Julian and Gubbins [48] call this the “bending ray” method. Graphically, we see 
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that an initial guess at the true ray path between the source and receiver is 
successively altered by a Newton’s iterative scheme to achieve the true ray path. We 
may use finite differences to solve the linear two-point boundary problem. On 
the other hand, if we use a finite element method, it is more efficient to begin with a 
variational statement of the problem based on Fermat’s principle. 

The steps (1) and (2) may be permuted in sequence. The nonlinear differential 
equations are discretized first, followed by a method for solving the resultant system 
of nonlinear algebraic equations. Any of a number of effective nonlinear equation 
solution methods may be applied here. 

4.6. Ray Amplitude Calculations 

When the response due to a disturbance is needed, the ray amplitudes are 
calculated along with the ray paths. The main ingredient in a ray amplitude 
computation is the geometric divergence factor of a ray tube 

Here, J(r) is the Jacobian of transformation from the Cartesian coordinates into the 
“ray coordinates.” The ray coordinates are the parameters characterizing a ray. It is 
seen from our earlier discussion that the triplet (S or r, py, pi) completely specifies a 
ray. The solution is given by either 

or 

The Jacobian J(r) of the transformation has a simple form 

where x indices the cross product of two vectors a x b, and Ic) is the magnitude of 
the vector c. Using a Laplace expansion formula, we obtain 

J(t)= ($&j)($$g) - (g&)‘. (4.22) 

There are three methods for estimating J(r): 

(I) Trace a set of rays and compute the distance between adjacent rays. 
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(II) Derive differential equations for the elements 

iYXi ax. 
---T 
8Pl 

and --$, 
dP, 

i= 1,2,3, 

and evaluate Eq. (4.22). 
(III) Solve the differential equations for the Jacobian J. 

The differential equations for the elements 

3X. 
---L 
ap; ’ 

i= 1,2,3, and j=l,2, 

are exactly the variational equations in the shooting method. Therefore, the use of the 
shooting method for tracing a ray between the source and the receiver gives the ray 
path and the ray amplitude. Similarly, in the nonshooting method, this information is 
contained in the Jacobian of Newton’s method and, therefore, the ray amplitude may 
be evaluated with one additional straightforward calculation at the termination of the 
ray tracing routine. This is indeed a desirable feature of the two-point boundary value 
methods. 

For the initial value methods, we use either scheme (I) or (III). Method (I) is just 
the procedure of Section 4.5, tracing a ray through a source and a receiver. Since the 
procedure of Section 4.5 is a variant of a two-point boundary value problem, the ray 
path and the zeroth approximation of the ray amplitude are simultaneously 
calculated. 

Method (III) is entirely different. Much attention has been focused on deriving the 
differential equation for J, the Jacobian of the transformation from the Cartesian 
coordinate to the ray coordinate (see Cerveny and Hron [ 141 for a discussion). 
Cerveny and PienEik [ 171 derived a set of five first-order differential equations for 
quantities useful in the computation of J. This set may be further reduced to three 
nonlinear first order differential equations. More recently, Cerveny and Hron [ 141, 
using a ray centered coordinate, obtain a system of three nonlinear Riccati equations 
called dynamic ray tracing equations. 

4.7. Comments on Numerical Solution 

For ray tracing applications, it is likely that the ODE system is nonstiff. Therefore, 
variable-order Adams methods are recommended, as they dynamically adapt the 
order of integration to the solution behavior. The solvers may be further modified to 
suit a specific class of problems. This can increase efficiency. For example, 
computations on a vector machine using a generic Adams method should be 
vectorized to take advantage of the simplicity of the scheme. The cost of an Adams 
integration step depends on the costs of evaluating f(x, u) in the ODE system 
y’ =f(x, y). By vectorizing ray tracing problems with the same source location but a 
set of takeoff angles, we gain computational efficiency since the function evaluations 
may be performed in parallel. 
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Another point worth noting is the computation of the ray amplitudes. Here, there 
are two choices: (1) compute a set of rays with identical initial position but with 
varying takeoff angles and use this result to obtain the Jacobian of transformation J 
from the Cartesian coordinates into the ray coordinates or (2) solve simultaneously 
the five or six ray tracing equations and the three nonlinear or live linear dynamic 
ray tracing equations for the Jacobian J and the ray path. The first choice has a very 
simple function to evaluate. In contrast, the dynamic ray tracing equations require an 
extensive computation to produce the coefficients of the equations. This involves the 
calculation of the tangent vector c to the ray and two mutually orthogonal vectors e, 
and e2 to form a basis. This is followed by a transformation to the ray-centered coor- 
diate system t, e, , and e2, where e, and e, are aligned with the polarizations of the 
shear waves. Finally, the coefficients of the dynamic ray tracing equations in the ray 
centered coordinate system are obtained. This added complexity can negate the gain 
in the direct computation of the Jacobian J. The trade-off, in using either choice (1) 
or (2), is that method (1) is more efficient but the Jacobian J may not be as accurate 
as method (2). The inaccuracy arises from using difference approximations to the 
derivatives. This question of computational accuracy and efliciency has been ignored 
by Cerveny and Hron [ 141 and requires further in-depth study to settle it. 

Next, we turn to the question of ray tracing using a two-point boundary value 
problem formulation. Here, it is required that the ray path must pass through the 
source and the receiver. The discussion on solving problems of this sort suggests that 
the process is expensive as compared with a strictly initial value problem formulation. 
The initial value problem formulation yields ray paths ignoring the receiver location. 

4.8. Ray Tracing by Circular Approximation 

An approximate method called the “circular approximation” has been proposed for 
solving the ray tracing equation in two spatial dimensions (Pedersen and Gordon 
[72], Pedersen [73], Marks [62]). The circular approximation method begins by 
partitioning the x-z domain 51 into a union of triangles A, called a grid. Then the 
velocity field V(X, z) is approximated in each A, by a piecewise linear approximation 

u(x, z) = ak + b,x + C~Z, x,zEAk. 

The resultant ray tracing equations in A, may be solved exactly with the ray path 
tracing out an arc of a circle. Starting at the triangle containing the source, we trace 
the ray as a circular path to a side of the triangle. The values of x and z at the inter- 
section point are the initial values for ray tracing solutions on the next triangle. This 
process is continued onto other triangular subdomains. Curvilinear interfaces may be 
treated without difficulty. 

This method, however, lacks a theoretical foundation. The choice of a grid is very 
important. This point has been totally neglected. Calculations by Marks [62] indicate 
that the method is effective and, moreover, the computation of the ray amplitude is 
simple. Nevertheless, without a rational algorithm for developing the grid, ray tracing 
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by the circular approximation is but an ad hoc procedure. It would be vauable to 
have an error analysis developed for this method. 

A similar numerical method for solving second-order stiff two-point boundary 
value problems has been studied by Chin and Krasny [24]. The procedure involves 
solving differential equations by approximating terms of the equation. The essential 
ideas are (1) to approximate certain terms of the differential equation over local 
domains so that the resultant differential equations are easily solved, (2) to apply 
approximation theory to develop an adaptive mesh strategy, and (3) to patch the 
local solutions to obtain a global solution. 
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